
18-578 Mechatronics Final Report

Team JollyRoger (Team A, ShipBot)

David Bang Fiona Li Sara Misra Haowen Shi Bo Tian
@dbang @siliangl @saram1 @haowensh @btian1

May 10 2019

Abstract

Trading across the world has not only facilitated the global economic growth, but also raised
huge demand for transportation capability. Shipping remains the most economic bulk
transportation method and we have seen potential in autonomously navigating ships. However,
human staff is still required and it is not financially feasible to modify all ships for complete
electronic control. Thus, we are sponsored by Leidos to create an autonomous robot that can
manipulate maritime devices. We named our robot JollyRoger.

In this report, we explain the process of designing, building and testing a robot capable of
autonomously operating electromechanical devices that are widely used on ships. The robot uses
a 5 degree of freedom arm to manipulate the devices and a 4 wheel chassis to move. The arm
consists of HEBI modules and a hybrid end-effector that turns different types of valves and
breakers. The robot uses encoders in wheel assembly and time of flight sensors for localization
and locomotion. The Mecanum wheels also allow the robot to move in different directions
without having to turn. A RealSense camera mounted on chassis and a fisheye camera on
end-effector are used for device recognition and end-effector position correction. We also use
ROS platform and established wireless communication module to simplify the testing process.

During the test, we find out that the hybrid end-effector is able to locate valves precisely
using feedback from the fisheye camera. However, more parameter tuning is required to
manipulate breakers reliably.

1

Table of Contents
1. Project description 4

2. Design requirements 4

3. Functional architecture 5
3.1 Functional Control Flow 5
3.2 Functional Architecture Diagram 6

4. Design concepts 7
4.1 Localization Methods 7

4.1.1 Table: TOF sensor trade study 7
4.2 End Effector 7

4.2.1 Table: End effector trade study 7
4.3 Wheel Type 8

4.3.1 Table: Wheel trade study 8
4.4 Computer Vision System 8

4.4.1 Table: Camera trade study 8

5. Cyber physical architecture 9
5.1 Electrical and Power Connection Diagram 9

5.1.1 Figure: Electrical and Power Connection Diagram 9
5.2 Software Architecture 9

5.2.1 Figure: Electrical and Power Connection Diagram 10

6. System description and evaluation 11
6.1.0 Figure: fully integrated system 11

6.1 Descriptions/Depictions 11
6.1.1 Chassis & Arm Subsystem 11

6.1.1 Figure: Chassis & Arm sketch 12
6.1.2 Compute & Power 12

6.1.1 Figure: Compute and Power subsystem integration 12
6.1.3 Vision Subsystem 12
6.1.4 Arm Software & Algorithms 13
6.1.5 Locomotion & Localization 13

6.5.1 Figure: Distance sensors for localization 13
6.2 Modeling, Analysis, Testing 13

Chassis & Arm Subsystem 13
Compute & Power 14
Vision Subsystem 14

2

Arm Software & Algorithms 14
Locomotion & Localization 14

6.3 Performance Evaluation 14
6.3.1 Stations and runtime 14
6.3.2 Coolness Factor 15
6.3.3 Failure 16

6.4 Strong/Weak Points 16

7. Project management 18
7.1 Schedule: Available at Schedule 18

7.1.1 Table: Schedule with detailed work breakdown 19
7.2 Budget: Available at Budget 19
7.3 Risk Management 20

7.3.1 Figure: Probability and Impact Matrix 20
7.3.2 Table: Risk Response Strategy 21
7.3.3 Table: Risk Analysis and Response 21

8. Conclusions 21
8.1 Lessons Learned 21

Planning and scheduling 21
Mechanical intelligence 21
Make things work first before trying to perfect them 22

8.2 Future Work 22

9. References 23

10. Appendix: Code and Documentation 23

3

1. Project description
There has been great ongoing research in autonomous ships which navigate across long

distances without much human intervention. However, human staff is still required to perform
tasks like maintenance on the ship, rendering the benefits from the automated driving less useful.
Our project addresses this problem by creating a robot which could autonomously operate
electromechanical devices. With the addition of what we call JollyRoger, autonomous ships can
be self-maintained to a greater degree, reducing the need of onboard human operators, essentially
cutting labor cost while reducing risks.

This project provides a proof-of-concept of a mechatronic device capable of operating
without modifying the existing human-operated devices . The device should be able to complete
the tasks in the confined boundaries of the ship and the short period of allowed time to be a
feasible solution to this problem of retrofitting maritime autonomy onto existing ships.

2. Design requirements

Requirement
Type

Design Requirement

Explicit Robot must fit within the size constraints of 1.5’ (width) x 1.5’ (depth) x 2.5’
(height)

Explicit Robot must be to parse and process a mission file designating destination device
stations and desired device orientations

Explicit Robot must be able to manipulate devices including valve and breakers to a
desired position (+/- 15 degree tolerance)

Explicit Robot must be able to traverse any given path in the 3' x 5' testbed space

Explicit Robot fit under budget constraints of ~$1250 in reimbursable expenses

Explicit Robot must be built robustly and without construction from prototype kits

Explicit Robot must be able to safely interact with the environment and will have an
emergency shut off button

Implicit Robot must be able to continuously localize itself with respect to the environment

Implicit Robot must have the capability to detect the starting orientation of the devices

Implicit Robot must have the capability to check the position of the devices after
manipulation and make additional manipulations

4

Implicit Robot must have the computing power to process computer vision algorithms in a
time restricted manner

Additional Robot will have a hybrid end effector with a combination of a granular jammer
and a beam to be used on different stations depending on the device requiring
manipulation at the station

Additional Robot will have fully onboard power and remote control through a wireless
network

Additional Robot will be able to move to desired station through the shortest path

Additional Robot will be able to complete multiple missions as scheduled timed tasks

Table 2.1: Explicit, implicit and additional design requirements for the ShipBot robot system.

3. Functional architecture

3.1 Functional Control Flow

Given a mission file at the initial position, our shipbot will parse the file and maintain a
scheduler for missions.

The mission will be divided into tasks where each task is an operation on the device on a
single station. The tasks will be sorted for maximum efficiency. For each task, the chassis will
localize itself and locomote towards the device’s station using the TOF readings and motor
encoder reading feedback.

Once the chassis is at the target station, RealSense depth camera will scan the device in front
of it and get the transformation + state of the device to be manipulated. The kinematics
component will then use this transform to plan out an initial path towards the device. Note that
there could be error in this transform and also error in arm’s trajectory execution.

To deal with these potential errors, an extra camera on the end effector feeds the real time
target position to the kinematics component and micro adjustments will be calculated and
executed by the arm to compensate for the error.

Once the arm end effector is in a good place, it will be actuated towards the device and end
effector will either rotate or translate to manipulate the target device.

The aforementioned steps will be repeated until all tasks in a mission is done. Once the
current mission is done, ShipBot either stops execution informing user about task completion or
continues executing of next mission if there is any.

5

3.2 Functional Architecture Diagram

3.2.1 Figure : Functional Architecture

6

4. Design concepts
In this section, localization methods, end effector, wheel type and computer vision system are

each analyzed in a trade study chart. The scores for each category are assigned as an integer
number between 1 and 5, with 5 being most desired state and 1 being underperformance. The
weight is set to reflect a more comprehensive and focused criteria.

4.1 Localization Methods

We choose the TOF sensor as it has a high sample rate and records data in the global frame
which we require to localize w.r.t. the testbed’s guardrail Note, the frame of reference is the
frame of the output data which is either in reference to the world (global) or in reference to the
sensor itself (local). Scheme: Global Frame- 5, Local Frame- 3

 Weight TOF Sensor Lidar Ultrasound IMU Optical Flow
Frame of Reference 0.125 5 5 5 1 1

Sample Rate 0.3 5 3 3 5 5
Hardware Costs 0.15 3 1 5 5 5

Computational Cost 0.125 3 1 3 3 5
Range 0.3 5 5 3 1 1
Score 1 4.45 3.3 3.55 3.05 3.3

4.1.1 Table: TOF sensor trade study

4.2 End Effector

The choice of end effector is crucial to the successful completion of our missions. It has to
be versatile while reliable. We first came up with three designs, friction pad, solid beam, and
granular jammer. However, each of the manipulators lack some manipulativeness in one or more
tasks. Thus, we want to create a hybrid end effector that combines the strength of granular
jammer and solid beam. We would also carefully design our end effector to avoid feature
interference.

 Weight Friction Pad Solid Beam Granular Jammer Hybrid
(Jammer + Beam)

Complexity 0.2 5 4 3 2
Handle Manip. 0.25 3 4 5 5
Valve Manip. 0.25 3 2 4 4

Breaker Manip. 0.25 1 4 2 4
Cost 0.05 5 5 3 3
Score 1 3 3.55 3.5 3.8

4.2.1 Table: End effector trade study

7

4.3 Wheel Type

The main function of the wheels is to provide an effective and fast means of locomotion for
the robot system. Due to the set up of the device stations, the ability to proceed in different
directions without turning would minimize our transit time between tasks. The maneuverability
of the Mecanum wheel set is outstanding. With a well-implemented control algorithm, the
mecanum wheel is the best fit for our application. We focus mainly on the maneuverability of the
wheels. Thus, we assign a weight of 0.5 to this criteria.

 Weight Skid Steer Mecanum Tread

Complexity 0.3 3 2 4

Cost 0.2 3 2 4

Maneuverability 0.5 2 5 2

Score 1 2.5 3.5 3

4.3.1 Table: Wheel trade study

4.4 Computer Vision System

We want to have it so our Vision System has the resolution and depth perception to correctly
detect the position and orientation of the devices. With the constraint of having a materials
budget, we decided to go with the Intel RealSense d435 over the Zed Stereo Camera. The lower
bound for the depth range for the Kinect and Zed cameras are 0.5 meters, and we will need to see
things in the testbed that are closer, so the RealSense with the smallest lower bound provides the
optimal solution for our task. In addition, our team members have prior experience working with
the Intel RealSense SDK.

 Weight Microsoft Kinect[1] Intel RealSense d435[2] Zed Stereo Camera[3]

Depth Range 0.3 2 (0.5 - 4.5m) 4 (0.2 - 10m) 3 (0.5 - 20 m)

Field of View 0.2 2 (H-V: 70° x 60°) 4 (H-V-D: 85.2° x 58° x
94°)

5 (H-V-D: 90°x 60° x 110°)

Video Resolution 0.2 3 (1920 x 1080 at 30
fps)

3 (1920 x 1080 at 30 fps) 4 (3840 x 1080 at 30 fps)

Depth Resolution 0.2 2 (512 x 424 at 30 fps) 4 (1280 x 720 at 90 fps) 5 (3840 x 1080 at 30 fps)

Cost 0.1 5 ($45) 3 ($179) 1 ($449)

Score 1 2.5 3.9 3.8

4.4.1 Table: Camera trade study

8

5. Cyber physical architecture

5.1 Electrical and Power Connection Diagram

Our system uses two onboard computers to interface with actuators and sensors. The high
performance computer is a NanoPi M4 single board Linux computer that capable of performing
heavy computer vision processing tasks. The other computer is a STM32F4 board responsible for
controlling low-level components such as motor controller, TOF sensors and end effector. Figure
5.1.1 shows the detailed interfacing and power distribution of our electrical system.

5.1.1 Figure: Electrical and Power Connection Diagram

9

5.2 Software Architecture

To reduce development time and efforts we decide to make our codebase ROS compliant.
This will give us good software compatibility and ease of integration. The microcontroller
software stack provides a nice abstraction layer for high level algorithms to work with. For
example, time of flight raw data samples are triangulated on STM32 board to provide the global
position of robot with respect to the guard rail frame. This offloads computation from onboard
computer and also provides a easy interface for obtaining location of the robot.

The figure below (figure 5.2.1) is a detailed interaction map between each module. Note we
also highlight amount of work required to get each module up and running.

5.2.1 Figure: Electrical and Power Connection Diagram

10

6. System description and evaluation

 6.1.0 Figure: fully integrated system

6.1 Descriptions/Depictions

6.1.1 Chassis & Arm Subsystem
The Chassis & Arm Subsystem functions to carry the entire system on board and is also

responsible for manipulating the end effector. It receives energy from battery in the Compute &
Electronics Subsystem to power the movement of the entire robot and commands from the Arm
Software & Algorithms Subsystem to reach the target devices. The Chassis & Arm Subsystem
should be a stable and agile platform with an accurate and fast responding arm.

As shown in figure 6.1.1 above, the chassis has a mecanum wheel set and is omnidirectional
for quick switching between stations. The electronics box towards the back also acts as a weight
balancing block for the heavy arm module up front. The arm comprises of four links in our initial
design and the configuration is illustrated above. The end effector is abstracted away as a box but
it should contain a rotating granular jammer and a solid beam for operating on different types of
electromechanical devices.

11

6.1.1 Figure: Chassis & Arm sketch

6.1.2 Compute & Power
The Compute & Power Subsystem provides computational and electrical power for the robot

to function. The compute part consists of two onboard computers (a high performance NanoPi
M4 and an auxiliary STM32 board). The power distribution system includes three separate
batteries to provide different power needs from computers, arm and chassis.

6.1.1 Figure: Compute and Power subsystem integration

6.1.3 Vision Subsystem
The Vision Subsystem contains a main depth camera for initial recognition and an end

effector camera for closed loop control on arm’s motion. This RealSense is used to determine the
starting orientations of the devices and the distance from the robot arm to the device. The arm
will go to an initial position based on the transform from the RealSense. The webcam on the end

12

effector will be used to ensure that the end effector comes in contact with the device and is
centered so that manipulation will be accurate.

6.1.4 Arm Software & Algorithms
The Arm Software and Algorithms Systems includes the motion planning, control and

kinematics of the robotic arm to manipulate target devices. This includes the decision of strategy
taken to change the state of a particular device. Since our arm has 5 degrees of freedom, motion
planning and micro adjustments require real IK algorithm instead of simple joint level controls.
We use Trac-IK library for calculating joint configurations (IK) and HEBI’s built in trajectory
API to enable a smooth motion with control over acceleration and velocity.

6.1.5 Locomotion & Localization
The Locomotion and Localization Subsystem is responsible for the movement control on

base motors, in which the creation of movement trajectory is aided by the Computer Vision
Subsystem, and knowing where the it is and performing moves relies heavily on Compute &
Electronics Subsystem. In this project, this subsystem is primarily for realizing robot’s
coordinates, determining and moving to the mission testbench and performing corresponding
tasks.

6.5.1 Figure: Distance sensors for localization

Figure 6.5.1 above shows how we layout a set of 8 distance (time-of-flight) sensors to get
robot’s position relative to the guard rails. We simplified localization system to utilize only three
TOF sensors, with assumption that chassis is always parallel to one of the guide rails.

6.2 Modeling, Analysis, Testing

Chassis & Arm Subsystem
We modeled the entire arm in CAD and tried different arm length combinations to make sure

that our arm subsystem can reach all the devices and operate them. We also modeled the
locations of wheels on the chassis to make sure we have enough space between all the
components. This is especially critical as we could not make changes to the chassis plate after we
have it cut and giving the fact we have quite long motors.

13

Compute & Power
We modelled how to place all the electronics in the e-box including batteries, power

convertors, emergency buttons, microcontroller, computer, motor controllers. As there are so
many components, we first modeled it by drawing rough placement ideas on the paper, later
when all the physical components arrived, we modeled by trying out layout in the box. Finally
we modeled in CAD to save more space and to finalize the placement.

Vision Subsystem
We modeled the RealSense placement in CAD and manually checked the field of view

from the mounted position to ensure that it could view the devices. We tested the placement of
the webcam and ensured that we could view the devices from close position. We tested and
calibrated the webcam closed loop control with the end effector position adjustments, in order to
make the end effector correctly touched the center of the valves, so that we can correctly
manipulate them.

Arm Software & Algorithms
We modeled the arm in simulation to test our motion planning. We used rVIZ through ROS,

which helped us with fail-fast testing on both forward kinematics and inverse kinematics design
and debugging. We also completed PID tuning to mainly reduce the error due to effect of gravity
on the arm, as well as ensuring smooth, consistent motion.

Locomotion & Localization
We modeled the chassis in simulation to test localization strategies. We used VREP for

localization which improved our developing speed by testing the software without the hardware
chassis existence.

For TOF sensor testing, we made cables of different lengths and tested each with connections
of different number of TOFs. We found that the bottleneck was the I2C wire length so in the
final design, we used the shortest configuration for wires and TOF connections. For localization
testing, we placed the robot onto the test bed in order to collect data for ideal TOF distance data
readings for each station.

6.3 Performance Evaluation

6.3.1 Stations and runtime
The test for the final performance evaluation

Locomotion to Station Manipulation of Station

Station Time Accuracy Device Time Accuracy

A 3.5s 99% V1 Horizontal 34s 99%

14

B 3.5s 99% V1 Vertical 34s 98%

C 3.5s 99% V2 34s 99%

D 3.5s 99% V3 Horizontal 34s 60%

E 3.5s 99% V3 Vertical 34s 50%

G 3.5s 75% Breaker Box A 34s 0%

H 3.5s 99% Breaker Box B 34s 0%

6.3.2 Coolness Factor
- Accepting multiple missions in a single mission file

We can take in a single file that contains multiple missions and make sure all the tasks in
the first mission will be executed before the second mission.

- Adjusting the order in which devices are visited to improve mission performance
We can take in a mission file and sort the tasks in the mission based on the alphabetical
order so that the robot will execute tasks by going through the entire test bed one and
only once from A to H.

- User telemetry
The user of our shipbot could view its decisions, actions and states and even abort
operations with a command line interface and also a view of end effector camera
remotely on a host PC.

- Fully onboard battery
We have three separate power sources to power compute, chassis and arm systems
individually. We fully studied the power requirements of each subsystem and made sure
we fully spec out the batteries for uncompromising performance under any reasonable
workload conditions.

- Technical sophistication
In terms of hardware, we built a robust chassis using strong mecanum wheels, 8020 sets
and aluminum sheets. The manipulation system is an ambitious 5-DOF HEBI module
arm and gives the system vast workspace while being very flexible.
In terms of software, the low level embedded controller is rocking RTOS with clearly
designed threads responsible for different hardware components. The timing and
interaction between tasks is carefully designed to prevent priority inversions and
deadlocks. The communication between low level controller and onboard PC is done
with a custom defined packing protocol with CRC checks to ensure maximum reliability.
The high level control code is mostly compliant with ROS to ease development. The
critical software components such as arm kinematics is written in C++ to achieve
maximum performance.

15

6.3.3 Failure
- Manual interventions:

We had two manual interventions during the final demos and the competition. Both of
them are caused by localization and locomotion.

- The first time during the final demo was due to the I2C and UART poor wire
connection. When the robot was already in the correct position, the message of it
being in the correct position was not delivered successfully so it got stuck in the
test bed. Right before the competition and public presentation, we detected the
issue and fixed it.

- The second time during the competition was due to the limit switch touching the
test bed rail guard by accident which made the robot turned and running away.
We should have a more robust software logic to handle such case.

- End effector closed loop vision camera failure:
In the final demo encore, where we were trying to incorporate the end effector closed
loop control, we discovered that the camera connection was lost and caused our pipeline
to fault, requiring a system restart. We later discovered that the connection issue was due
to a too long and not so well insulated USB extension cable. We replaced it and resolved
the issue.

6.4 Strong/Weak Points

The strong and weak points will be evaluated based on each subsystem in the table below:

Subsystem Strong/
Weak

Chassis & Arm Strong Arm of 5 HEBI modules provided 5 degrees of freedom in total for
arm manipulation.

 Strong 8020 along with an aluminum board to make our robot stable and
strong to hold.

 Strong All the electronics are well organized in the electronic box.

 Strong Mecanum wheels provide 360 degrees of freedom when moving
inside the test bed.

 Weak The arm has too many degrees of freedom than needed to perform the
required tasks. Thus, provided us a lot of extra work to test and adjust
in order to perform missions.

 Weak The end effector design is also complicated because both of the stick
and the granular jammer require a lot of accuracy which required

16

more software development than we expected.

Compute &
Power

Strong STM32 is used which is more powerful than Arduino.

 Strong A real time operating system is implemented on STM32, which
provided us a lot of freedom to schedule and control tasks on chassis,
TOF and motors.

 Strong NanoPi is used which is a more powerful computer than Raspberry Pi.

 Strong ROS is used on the NanoPi for better subsystem integration.

 Weak Dealing with real time operating system, UART communication
between STM32 and NanoPi took way longer than we expected as
both of them are more complicated hardware to work with.

Vision Subsystem Strong Both of the device detection with RealSense and end effector closed
loop device detection and hand correction with webcam are useful
and accurate enough to allow the end effector to reach the desired
device.

 Weak The webcam placement of the end effector could have been better -
the current placement has both x and y offset to the end effector so
manual offsetting and lots of experiments are required to make sure
hand adjustments are accurate.

Arm Software &
Algorithms

Strong Three stages are created, which are arm execution that move arm to
the approximate position, arm correction that calculated based on the
webcam on the end effector and hand execution which performs the
actual task on the device.

 Strong PID closed loop controlled HEBI modules for the arm.

 Weak The exact software running on 64 bit linux behaves differently from it
running on 32 bit linux. We needed to bridge kinematics node to
external laptop to get around this issue.

Locomotion &
Localization

Strong Feedback loop of station detection is implemented, result in extremely
accurate localization.

 Strong PID is well tuned for locomotion controls, which makes the move and
turn of the robot accurate and desirable.

 Strong Make use of three TOF sensors for localization.

 Strong Applied Kalman Filter on TOF sensor data readings to stabilize

17

hardware data output for better software controls.

 Weak Did not make use of all 6 TOF we purchases due to I2C wire length
constraints which took us a lot of time to debug, change plan and fix
the problems.

7. Project management

7.1 Schedule: Available at Schedule

Task
ID

Task Title Task Owner

1 Design Proposal All
1.1 Meeting 0: Project overview and sub-system assignment All
1.2 Project Abstraction and Design requirements Sara, Bo, David

1.3 Meeting 1: Project control flow, Mechanical Design, Functional and Cyber physical
architecture

Haowen, Fiona

1.4 Cyber physical architecture and Battery management Haowen, Fiona
1.5 Trade analysis on sensors, end effector, wheels and system Sara, Bo, David, Haowen
1.6 Meeting 2: Working on the proposal together: 1) Filling out trade analysis 2) Creating

and linking time and budget management chart 3) Adding diagram and description for
Functional and Cber 4) Applying proposal standards and formats

All

2 Mock-Up Demonstration
2.1 CAD Model Parts Sketch and Engineering Drawings Bo

2.2 Base Structure Design, Arm Link Design and Rigid Finger Design on the End Effector All

3 Sensors Lab

3.1 Base Structure Design and Manufacturing All

3.2 Arm Link Design and Manufacturing All

4 Microcontroller DC, RC Servo and Stepper Motor Lab
4.1 Wheel, Motor and Controller Integration Bo
4.2 Monocular Camera Integration End Effector and RS Camera Integration and on the Base All

4.3 HEBI Module Integration on Arm Joints Haowen, Sara
4.4 Base Motor and Base Motor Encoder Integration Haowen
4.5 TOF Sensors Integration and Calibration Fiona, Haowen
5 System Demo #1
5.1 RS Camera, Monocular, TOF Calibration Sara, Haowen
6 System Demo #2
6.1 Main Depth Camera CV System Design David
6.2 Arm Software System Design Sara, Haowen
6.3 Locomotion and Localization Software System Design Haowen, Sara

18

https://docs.google.com/spreadsheets/d/1sNQF58Qz6RQot1I4cLkgjmHSL1R8N38qO4Vuq7yWmQs/edit#gid=1566147745
https://docs.google.com/document/d/1xfnaTqwhJEQIX6_vPOZxkBIM5UL5Y684gEL7sRCa7-0/edit#heading=h.iiaabqe00yua
https://docs.google.com/document/d/1xfnaTqwhJEQIX6_vPOZxkBIM5UL5Y684gEL7sRCa7-0/edit#heading=h.uefphnlysp19
https://docs.google.com/document/d/1xfnaTqwhJEQIX6_vPOZxkBIM5UL5Y684gEL7sRCa7-0/edit#heading=h.wakybx12yb9f
https://docs.google.com/document/d/1xfnaTqwhJEQIX6_vPOZxkBIM5UL5Y684gEL7sRCa7-0/edit#heading=h.q33okrn0j07
https://docs.google.com/document/d/1xfnaTqwhJEQIX6_vPOZxkBIM5UL5Y684gEL7sRCa7-0/edit#heading=h.uefphnlysp19
https://docs.google.com/document/d/1xfnaTqwhJEQIX6_vPOZxkBIM5UL5Y684gEL7sRCa7-0/edit#heading=h.wakybx12yb9f
https://docs.google.com/document/d/1xfnaTqwhJEQIX6_vPOZxkBIM5UL5Y684gEL7sRCa7-0/edit#heading=h.a6zdhgkem4ju
https://docs.google.com/document/d/1xfnaTqwhJEQIX6_vPOZxkBIM5UL5Y684gEL7sRCa7-0/edit#heading=h.eo6fb9mmo01y

7 Mid-semester Presentation All
8 Peer Evaluation #1 All
9 System Demo #3 All
9.1 Subsystem Independent Development And Testing All
9.2 Chassis Integration Bo
10 System Demo #4 All
10.1 Communication between STM32 and NanoPi Haowen, Fiona
11 System Demo #5 All
11.1 TOF sensor debugging and integration Fiona, Haowen
12 System Demo #6 All
12.1 Localization Finalization All
12.2 Locomotion Testing and Tuning Haowen, Fiona
13 System Demo #7 All
13.1 Arm Implementation and Integration Sara, Haowen
13.2 Final Subsystems Integration All
14 Final System Demo All
14.1 Testing and Fine Tuning All
15 Final System Demo Encore All
15.1 End Effector Webcam Closed Loop Control Implementation And Integration David, Haowen
15.2 Testing and Fine Tuning All
16 Public Presentation All
17 Final Report All
18 Peer Evaluation #2 All
19 Lab Clean-up All

7.1.1 Table: Schedule with detailed work breakdown

7.2 Budget: Available at Budget

Date
(mm/dd/yyyy) Description Vender# Unit Price Qty Total Price

2/5/2019 STM32 Development Board 511-NUCLEO-F411RE $13.00 1 $13.00

2/5/2019 TOF Sensors 511-VL53L1X-SATEL $18.50 1 $55.50

2/5/2019 Intel Realsense D435
607-82635AWGDVKP

RQ $199.00 1 $208.79
2/7/2019 DC Motor Encoder Driver RB-Mab-181 $49.99 1 $99.98
2/7/2019 6mm Set Screw Hubs RB-Nex-17 $9.40 1 $57.33

2/12/2019 Mecanum Wheels RB-Nex-13 $134.00 set of 4 $153.77

2/20/2019
BUD Industries JB-3960 Steel
NEMA 1 Junction Box JB-3960 $24.07 1 $24.07

2/20/2019
3M Pro Grade Sandpaper, 9 X
11-Inches, 220 Grit 26220CP-5-G $15.95 20/pack $15.95

19

https://docs.google.com/spreadsheets/d/1OniD2kYxmOcOyK_Ed6Aa0RPrlKGY19YIdesunvDdlXk/edit#gid=0

2/20/2019
6061 Aluminum Sheet 0.19"
Thick, 18" x 18" 89015K284 $72.12 18'' x 18'' $72.12

2/20/2019

Male-Female Threaded Hex
Standoff Aluminum, 3/8" Hex
Size, 1" Long, 10-32 Thread Size 93505A178 $1.26 1 $15.12

2/20/2019

Female Threaded Round
Standoff Aluminum, 1/4" OD, 3"
Long, 10-32 Thread Size 93330A544

$1.69
1 $20.28

2/25/2019 Thermal Pad 145 x 145 x 1.0 mm ACTPD00005A $14.99 1 $14.99

3/5/2019
Low-Profile Mounted Sealed
Steel Ball Bearing 5913K63 $11.78 1 $47.12

3/7/2019 8020 fastener Part No. 3495 3495 $0.44 1 $19.80

3/7/2019
8020 corner bracket Part No.
4108 4108 $2.75 1 $41.25

3/7/2019
8020 corner bracket Part No.
4115 4115 $4.05 1 $79.61

3/26/2019 NeveRest 60 12V, 105RPM, 593
oz-in Gearmotor w/ Encoder RB-And-169 $28.00 1 $131.82

3/27/2019 8020 fastener Part No. 3416 3416 $0.40 1 $42.61
04/08/2019 Logitech C270 c270 $19.99 1 $19.99

4/30/2019 URBEST Hinge Roller Lever
Micro Switches $8.29 10pk $8.29

Total $1,141.39

7.3 Risk Management

7.3.1 Probability and Impact Matrix

9 P
R
O
B
A
B
I
L
I
T
Y

9 27 45 63 81

7 7 21 35 49 63

5 5 15 25 35 45

3 3 9 15 21 27

1 1 3 5 7 9

Low
Med
High

IMPACT

1 3 5 7 9

7.3.1 Figure: Probability and Impact Matrix

7.3.2 Risk Response Strategy

Qualitative Risk Score (X) Risk Response Strategy Quantitative Risk Analysis Required?
Threat Opportunity

X < 10 Accept Accept No
10 ≤ X < 36 Mitigate Enhance Yes

36 ≤ X Avoid Exploit Yes

20

7.3.2 Table: Risk Response Strategy

7.3.3 Risk Analysis and Response

Failure Impact Probabil
ity

Risk Response Description Response Cost Residual Risk

Motor
malfunction

8 4 Not able to control the
robot

Mitigate Replace motors and check
controllers/wires

Motor cost Motor
malfunction

Structure failure 9 2 Not able to hold the
system as a whole

Mitigate Use thicker plate and check
the fasteners

Material and
machining cost

Higher weight

End Effector
Inaccuracy

7 5 Not being able to move
the device to required

state

Mitigate Re-calibrate the arm and
vision sensor. May have to

redesign arm

Machining the
arm/calibrating

Damage to the
arm

Recognition
Failure

9 3 Unable to recognize and
change device state

Mitigate Re-tune parameters/ use
another recognition

algorithm

Software change
and tuning cost

Failure still
occurs

Localization
Inaccuracy

7 4 Not able to move to
station / align the robot to

the station properly

Mitigate Calibrate sensors and change
their configuration to assist

in better localization

Calibrating and
sensor cost

Failure still
occurs/cost of
more sensors
and weight

Computing
Latency

9 2 Not able to process CV
algorithms in timely
manner and execute

mission in time
constraints

Mitigate Upgrade computing
hardware. Optimize CV

algorithms

Software change
and hardware

cost

Failure to
complete
mission in

time

Battery
Malfunction

9 1 Not able to power
components of the robot.
Potential battery hazard

Accept Ensure robust circuitry.
Upgrade power management

board

Spare Batteries
and easy to

replace dock

The battery
could catch on

fire again

7.3.3 Table: Risk Analysis and Response

8. Conclusions

8.1 Lessons Learned

Planning and scheduling
One thing we did not do great on this semester is planning. Our shipbot implementation is

incredibly complex and involves multiple major subsystems such as localization, locomotion,
kinematics, computer vision and more. Since the system is so complex, we needed a lot of prior
planning to make sure we have enough time for system integration. However, we did not realize
the importance of planning and left little time for integration & testing. This left us in a bad
situation because sometimes bugs could not be found until everything is put together and we
discovered a lot of problems in our system in the last two weeks. To fix everything we needed to
make compromises and sometimes major changes to already implemented subsystems which
take a lot of time.

Mechanical intelligence
In this project, we also realized the importance of solving problems with mechanical

solutions instead of software. For our ship bot we decided to go with a 5-DOF arm which was
easy to construct using HEBI modules. The complexity of controlling a 5-DOF arm and its

21

inherent precision problems gave us a hard time writing smart heuristics and workarounds which
would not have been needed if we made the mechanical platform simpler to control, e.g. using
XYZ gantry plus a simple manipulator.

Make things work first before trying to perfect them
For this project our ambition led us to make many design choices which complicate our

system development a lot. For example, for interfacing with low level hardware, we could have
used more accessible platforms such as Arduino, but we sticked with STM32 which is a slightly
more professional platform but much harder to deal with. Putting RTOS on STM32 and making
it work with a bunch of sensors / actuators plus dealing with communication has a big learning
curve. In addition to that, we tried to make things even more perfect and professional by adding
CRC check in serial communication, using packed data format instead of using simple ASCII
strings. Another mistake we made is to try to implement particle filter for multiple sensors to
achieve all-time localization. This required research level efforts and took us a lot of time to try
figure out, but just to eventually give up. Many small design decisions like these complicate our
system and devour our precious time to actually develop a working shio bot system. Through this
project we realized the importance not to be an idealist and try to make things work before trying
to make them perfect.

8.2 Future Work

The robot has had all its components installed and subsystems functioning. However, there is
still future work to be done to demonstrate its full potential. Two major aspects would be
computer vision robustness and arm system accuracy fine tuning.

Better computer vision algorithm would improve our accuracy in detecting device types and

operating them. We are currently getting device types from the mission file. However, one of our
original coolness factors is to recognize the devices automatically. We also implemented an
algorithm that captures the device position relative to the RealSense camera and then transmit the
information to arm subsystem for preliminary device localization. We would want to fully test
and tune the algorithm to provide accurate translation matrix to the control system under
different circumstances. This would allow our robot to operate in different lighting conditions
and increase its reliability. The camera on the end-effector is used to make sure we can localize
the device precisely. We would adjust the algorithm to make it compatible to all devices we need
to operate on. This would provide us reliable close-loop control on the end-effector and make
sure we can manipulate the devices to desired state.

We would also like to improve our arm subsystem if we are allowed more time to work on

the robot. The arm subsystem is responsible of manipulating the devices under our command.
The accuracy of its execution is essential in fulfilling the goal of our robot. We use HEBI
modules to command the 5 degree of freedom arm. Due to the weight of the arm itself, we need
to do gravity compensation when commanding the arm to reach certain position. We could
improve our implementation on this to improve our arm accuracy. We also uses inverse
kinematics in planning the arm trajectory. This can sometimes cause problem as we do not have
collision detection. While adding a collision detection algorithm could be a solution, we would

22

like to just improve on how the trajectory is planned and executed. This is because we have a
relatively simple and fixed working space with known positions we need to reach. If we have the
work mentioned above finished, we would improve both our devices detection and arm
execution, thus advance the overall functionality of the robot.

9. References
[1] https://www.researchgate.net/figure/Technical-specifications-of-the-Kinect-v2_tbl1_321048476

[2] https://click.intel.com/intelr-realsensetm-depth-camera-d435.html

[3] https://www.stereolabs.com/zed/one

[4]https://towardsdatascience.com/kalman-filter-an-algorithm-for-making-sense-from-the-insight
s-of-various-sensors-fused-together-ddf67597f35e

[5] http://wiki.ros.org/trac_ik

10. Appendix: Code and Documentation
Github Repositories: Contains all the code we have written for this project

[1] https://github.com/cmu-jollyroger/jr-ros

[2] https://github.com/cmu-jollyroger/jr-stm32-rtos

[3] https://github.com/cmu-jollyroger/arm-control

[4] https://github.com/cmu-jollyroger/jr-stm32-firmware

[5] https://github.com/cmu-jollyroger/jr-base-locomotion

[6] https://github.com/cmu-jollyroger/jr-sim

Website: All the documentation of the project is on our website

https://sites.google.com/view/cmu-jollyroger/home

23

https://www.researchgate.net/figure/Technical-specifications-of-the-Kinect-v2_tbl1_321048476
https://click.intel.com/intelr-realsensetm-depth-camera-d435.html
https://www.stereolabs.com/zed/
https://towardsdatascience.com/kalman-filter-an-algorithm-for-making-sense-from-the-insights-of-various-sensors-fused-together-ddf67597f35e
https://towardsdatascience.com/kalman-filter-an-algorithm-for-making-sense-from-the-insights-of-various-sensors-fused-together-ddf67597f35e
http://wiki.ros.org/trac_ik
https://github.com/cmu-jollyroger/jr-ros
https://github.com/cmu-jollyroger/jr-stm32-rtos
https://github.com/cmu-jollyroger/arm-control
https://github.com/cmu-jollyroger/jr-stm32-firmware
https://github.com/cmu-jollyroger/jr-base-locomotion
https://github.com/cmu-jollyroger/jr-sim
https://sites.google.com/view/cmu-jollyroger/home

